Sieboldine A, a Novel Tetracyclic Alkaloid from *Lycopodium sieboldii*, Inhibiting Acetylcholinesterase

Yusuke Hirasawa,[†] Hiroshi Morita,[†] Motoo Shiro,[‡] and Jun'ichi Kobayashi^{*,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and X-ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan

jkobay@pharm.hokudai.ac.jp

Received August 19, 2003

ABSTRACT

A novel *Lycopodium* alkaloid with an unprecedented fused-tetracyclic ring system consisting of an aza-cyclononane ring having a *N*-hydroxy group, a cyclohexanone, a cyclopentanone, and a tetrahydrofuran ring, sieboldine A (1), was isolated from the club moss *Lycopodium sieboldii*. The structure and relative stereochemistry were elucidated on the basis of 2D NMR data and X-ray analysis. Sieboldine A (1) exhibited a potent inhibitory activity against acetylcholinesterase and modest cytotoxicity.

Plants of *Lycopodium* species (Lycopodiaceae) produce a number of structurally diverse alkaloids¹ that often possess unusual skeletons, and many of them continue to be of interest from biogenetic² and biological^{1a,1b} points of view, as well as challenging targets for total synthesis.³ Recently we have isolated serratezomines A, B, and C⁴ with seco-serratinine-type, serratinine-type, and lycodoline-type skeletons, respectively, from the club moss *L. serratum* var.

10.1021/ol035560s CCC: \$25.00 © 2003 American Chemical Society Published on Web 09/18/2003

serratum, complanadine A^5 with a lycodine-dimeric skeleton and lyconadin A^6 consisting of a fused pentacyclic ring system from *L. complanatum*, and senepodines A-E,⁷ lyconesidines A-C,⁸ and himeradine A^9 from *L. chinense*. In our search for biogenetically interesting intermediates of

[†] Hokkaido University.

[‡] Rigaku Corporation.

⁽¹⁾ For reviews of Lycopodium alkaloids, see: (a) Bai, D. L.; Tang, X. C.; He, X. C. Curr. Med. Chem. 2000, 7, 355–374. (b) Kozikowski, A. P.; Tüeckmantel, W. Acc. Chem. Res. 1999, 32, 641–650. (c) Ayer, W. A.; Trifonov, L. S. In The Alkaloids; Cordell, G. A., Brossi, A., Ed.; Academic Press: New York, 1994; Vol. 45, p 233. (d) Ayer, W. A. Nat. Prod. Rep. 1991, 8, 455. (e) MacLean, D. B. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, p 241. (f) MacLean, D. B. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1973; Vol. 14, p 348. (g) MacLean, D. B. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 10, p 305.

^{(2) (}a) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. **1996**, 118, 1799–1800. (b) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. **1993**, 115, 3020–3021.

^{(3) (}a) Yen, C. F.; Liao, C. C. Angew. Chem., Int. Ed. **2002**, 41, 4090–4092. (b) Cassayre, J.; Gagosz, F.; Zard, S. Z. Angew. Chem., Int. Ed. **2002**, 41, 1783–1784. (c) Comins, D. L.; Williams, A. L. Org. Lett. **2001**, 3, 3217–3220. (d) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. J. Org. Chem. **1999**, 64, 2184–2185. (e) Comins, D. L.; Brooks, C. A.; Al-awar, R. S.; Goehring, R. R. Org. Lett. **1999**, 1, 229–231. (f) Sha, C. K.; Lee, F. K.; Chang, C. J. J. Am. Chem. Soc. **1999**, 121, 9875–9876 and references therein.

⁽⁴⁾ Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2000, 65, 6241-6245.

⁽⁵⁾ Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. *Tetrahedron Lett.* **2000**, *41*, 9069–9073.

⁽⁶⁾ Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem. 2001, 66, 5901–5904.

⁽⁷⁾ Hirasawa, Y.; Morita, H.; Kobayashi, J. *Tetrahedron* **2003**, *59*, 3567–3573.

⁽⁸⁾ Hirasawa, Y.; Morita, H.; Kobayashi, J. *Tetrahedron* **2002**, *58*, 5483–5488.

⁽⁹⁾ Morita, H.; Hirasawa, Y.; Kobayashi, J. J. Org. Chem. 2003, 68, 4563–4566.

Lycopodium alkaloids, sieboldine A (1), a novel alkaloid with an unprecedented skeleton consisting of an aza-cyclononane ring having an *N*-hydroxy group, a cyclohexanone, a cyclopentanone, and a tetrahydrofuran ring, was isolated from the club moss *L. sieboldii*. In this paper we describe the isolation and structure elucidation of 1.

The club moss *L. sieboldii* collected in Kagoshima was extracted with MeOH, and the extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted at pH 10 with saturated Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an LH-20 column (CHCl₃/MeOH, 1:1), followed by a silica gel column (CHCl₃/MeOH, 80:1), to afford sieboldine A¹⁰ (**1**, 10 mg, 0.003% yield), together with a known, related alkaloid, alopecuridine¹¹ (**2**, 0.03%).

Sieboldine A (1) showed a pseudomolecular ion peak at $m/z 294 (M + H)^+$ in the FABMS, and the molecular formula $C_{16}H_{23}NO_4$ was established by HRFABMS [m/z 294.1709, $(M + H)^+$, $\Delta + 0.4$ mmu]. IR absorptions implied the presence of hydroxyl (3400 cm⁻¹) and cyclopentanone and cyclohexanone (1750 and 1695 cm⁻¹, respectively) functionalities. ¹³C NMR data (Table 1) revealed 16 carbon

Table 1.	¹ H and ¹³ C NMR Data of Sieboldine A (1) in CD ₃ OD	
	$\delta_{ m H}$	$\delta_{\rm C}$
1	4.89 (1H, m)	98.5
2a	1.98 (1H, m)	31.4
2b	2.12 (1H, m)	
3a	2.08 (1H, m)	26.1
3b	2.40 (1H, m)	
4		92.8
5		212.6
6a	1.93 (1H, dd, 19.6, 10.9)	37.2
6b	2.45 (1H, dd, 19.6, 9.2)	
7	3.25 (1H, m)	38.7
8a	1.76 (1H, m)	31.8
8b	1.77 (1H, m)	
9a	2.91 (1H, ddd, 14.8, 8.0, 3.7)	54.5
9b	3.19 (1H, m)	
10a	1.63 (1H, m)	19.4
10b	2.57 (1H, m)	
11a	1.77 (1H, m)	28.3
11b	2.46 (1H, m)	
12		62.3
13		216.5
14a	2.03 (1H, m)	47.7
14b	2.54 (1H, dd, 12.7, 12.7)	
15	2.06 (1H, m)	32.5
16	1.06 (3H, d, 6.2)	22.5

signals due to two carbonyls, two sp³ quaternary carbons, three sp³ methines, eight sp³ methylenes, and one methyl. Among them, one quaternary carbon (δ_C 92.8) was ascribed

to that bearing an oxygen atom, and one methine ($\delta_{\rm C}$ 98.5; $\delta_{\rm H}$ 4.89) was ascribed to that bearing both an oxygen and a nitrogen atom.

The ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and HOHAHA spectra revealed connectivities of three partial structures **a** (C-6 to C-8, C-8 to C-15, and C-14 to C-16), **b** (C-9 to C-11), and **c** (C-1 to C-3) as shown in Figure 1. HMBC correlations were

Figure 1. Selected 2D NMR correlations for sieboldine A (1).

observed for H-6b and H-8a to C-12 ($\delta_{\rm C}$ 62.3) and H-11b to C-7 ($\delta_{\rm C}$ 38.7), suggesting that C-7 and C-11 were connected to each other through C-12. The connectivity of C-4 to C-12 was implied by an HMBC correlation for H-11b to C-4 ($\delta_{\rm C}$ 92.8). HMBC cross-peaks for H₂-6 to C-5 ($\delta_{\rm C}$ 212.6) and H₂-14 to C-13 ($\delta_{\rm C}$ 216.5) indicated that two carbonyls were attached to C-6 and C-14, respectively. Since ¹H and ¹³C NMR signals at C-2, -3, -10, and -11 were broadened, further connections could not be clarified by the NMR data.

The X-ray crystal structure¹² (Figure 2) of sieboldine A (1) revealed a unique, fused-tetracyclic ring system consisting

Figure 2. X-ray structure of sieboldine A (1).

of an aza-cyclononane ring (C-1–C-4, C-9–C-12, and N-1) having an *N*-hydroxy group, a tetrahydrofuran ring (C-1–

⁽¹⁰⁾ Sieboldine A (1): colorless needles; dec 160 °C (from CH₃OH), $[\alpha]_D + 139^\circ$ (*c* 0.3, CH₃OH); IR (neat) ν_{max} 3400, 2940, 1750, 1695, 1450, and 1060 cm⁻¹; ¹H and ¹³C NMR data (Table 1); FABMS *m*/*z* 294 (M + H)⁺; HRFABMS *m*/*z* 294.1709 (M + H; calcd for C₁₆H₂₄NO₄, 294.1705). (11) Ayer, W. A.; Altenkirk, B.; Fukazawa, Y. *Tetrahedron* **1974**, *30*, 4213–4214.

C-4 and O-2) connected to a *cis*-5,13-dioxo-octahydroindene ring (C-4-C-8 and C-12-C-15) with a methyl (C-16) group at C-15 through the spiro carbon at C-4.

A plausible biogenetic pathway for sieboldine A (1) is proposed as shown in Scheme 1. Alopecuridine (2),¹¹ which might be derived from lycopodane skeleton,¹ as well as fawcettimine,¹³ may exist in either an aminoacetal form or an amino ketone form. The aminoacetal form of **2** was confirmed directly by X-ray analysis (Figure 3).¹⁴ Sieboldine

Figure 3. X-ray structure of alopecuridine (2). One H₂O molecule is contained in the crystal.

A (1) might be generated from a fawcettimine-type alkaloid such as alopecuridine¹¹ (2) as follows. Cleavage of the C-13-

Org. Lett., Vol. 5, No. 21, 2003

N-1 bond of an N-oxidative product of **2** followed by Polonovski-type reaction¹⁵ (path **a**) might result in an iminium intermediate **A** with a nine-membered ring system, although an alternative path through a hydroxylamine derivative **B** is also possible (path **b**). Oxidation of the imine **A** to produce an oxaziridine ring or a nitrone followed by attack of the hydroxy group at C-4 to C-1 will give sieboldine A (**1**) with a hydroxylamine and a tetrahydrofuran ring, although an alternative path (path **c**) is also possible.

Sieboldine A (1) inhibited acetylcholinesterase (from electric eel) with an IC₅₀ value of 2.0 μ M, which was comparable to that (IC₅₀ 1.6 μ M) of (±)-huperzine A,^{16,17} and exhibited cytotoxicity against murine lymphoma L1210 cells (IC₅₀ 5.1 μ g/mL) in vitro,¹⁸ whereas **2** did not show such activity (IC₅₀ > 10 μ g/mL).

Acknowledgment. The authors thank Mrs. S. Oka and Miss M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: 1D and 2D NMR spectra for compound **1** and X-ray crystallographic data of **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035560S

(15) Grierson, D. Org. React. 1990, 39, 85-295.

(17) Alopecuridine (2) did not inhibit acetylcholinesterase (IC₅₀ > 250 μ M).

(18) Kishi, K.; Yazawa, K.; Takahashi, K.; Mikami, Y.; Arai, T. J. Antibiot. 1984, 37, 874-852.

⁽¹²⁾ Crystal data for sieboldine A (1): dec 160 °C (from CH₃OH), C₁₆H₂₃NO₄, M_r = 293.36, monoclinic, space group $P_{21}2_{12}2_1$ (No. 19), a =7.8245 (7), b = 10.4867(9), c = 17.601(1) Å, V = 1444.2(2) Å³, Z = 4, $D_{calc} = 1.349$ g/cm³. The final *R* value was 0.053 ($R_W = 0.078$) for 2398 reflections [$I > -3.00\sigma(I)$].

⁽¹³⁾ Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. **1989**, *54*, 1548–1562.

⁽¹⁴⁾ Crystal data for alopecuridine (2): mp 170–171 °C (from CH₃-OH), $C_{17}H_{21}NO_4$, $M_r = 303.36$, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 13.329 (1), b = 15.113(1), c = 7.459(2) Å, V = 1502.5(4) Å³, Z = 4, $D_{calc} = 1.341$ g/cm³. The final *R* value was 0.047 ($R_W = 0.090$) for 1983 reflections [$I > -3.00\sigma(I)$].

⁽¹⁶⁾ Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. Anal. Biochem. **1997**, 253, 162–168.